\(\int \frac {\text {csch}^2(c+d x)}{(a+b \tanh ^2(c+d x))^2} \, dx\) [38]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 82 \[ \int \frac {\text {csch}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=-\frac {3 \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{5/2} d}-\frac {3 \coth (c+d x)}{2 a^2 d}+\frac {\coth (c+d x)}{2 a d \left (a+b \tanh ^2(c+d x)\right )} \]

[Out]

-3/2*coth(d*x+c)/a^2/d-3/2*arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))*b^(1/2)/a^(5/2)/d+1/2*coth(d*x+c)/a/d/(a+b*tanh
(d*x+c)^2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3744, 296, 331, 211} \[ \int \frac {\text {csch}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=-\frac {3 \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{5/2} d}-\frac {3 \coth (c+d x)}{2 a^2 d}+\frac {\coth (c+d x)}{2 a d \left (a+b \tanh ^2(c+d x)\right )} \]

[In]

Int[Csch[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

(-3*Sqrt[b]*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(2*a^(5/2)*d) - (3*Coth[c + d*x])/(2*a^2*d) + Coth[c + d*
x]/(2*a*d*(a + b*Tanh[c + d*x]^2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 3744

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff^(m + 1)/f), Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)
^(m/2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{x^2 \left (a+b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{d} \\ & = \frac {\coth (c+d x)}{2 a d \left (a+b \tanh ^2(c+d x)\right )}+\frac {3 \text {Subst}\left (\int \frac {1}{x^2 \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{2 a d} \\ & = -\frac {3 \coth (c+d x)}{2 a^2 d}+\frac {\coth (c+d x)}{2 a d \left (a+b \tanh ^2(c+d x)\right )}-\frac {(3 b) \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{2 a^2 d} \\ & = -\frac {3 \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{5/2} d}-\frac {3 \coth (c+d x)}{2 a^2 d}+\frac {\coth (c+d x)}{2 a d \left (a+b \tanh ^2(c+d x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.13 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.05 \[ \int \frac {\text {csch}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {-3 \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )-2 \sqrt {a} \coth (c+d x)-\frac {\sqrt {a} b \sinh (2 (c+d x))}{a-b+(a+b) \cosh (2 (c+d x))}}{2 a^{5/2} d} \]

[In]

Integrate[Csch[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

(-3*Sqrt[b]*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]] - 2*Sqrt[a]*Coth[c + d*x] - (Sqrt[a]*b*Sinh[2*(c + d*x)])/
(a - b + (a + b)*Cosh[2*(c + d*x)]))/(2*a^(5/2)*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(251\) vs. \(2(68)=136\).

Time = 1.55 (sec) , antiderivative size = 252, normalized size of antiderivative = 3.07

method result size
risch \(-\frac {2 a^{2} {\mathrm e}^{4 d x +4 c}+3 a b \,{\mathrm e}^{4 d x +4 c}+3 \,{\mathrm e}^{4 d x +4 c} b^{2}+4 a^{2} {\mathrm e}^{2 d x +2 c}-6 \,{\mathrm e}^{2 d x +2 c} b^{2}+2 a^{2}+5 a b +3 b^{2}}{\left (a +b \right ) d \,a^{2} \left (a \,{\mathrm e}^{4 d x +4 c}+b \,{\mathrm e}^{4 d x +4 c}+2 \,{\mathrm e}^{2 d x +2 c} a -2 b \,{\mathrm e}^{2 d x +2 c}+a +b \right ) \left ({\mathrm e}^{2 d x +2 c}-1\right )}+\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right )}{4 a^{3} d}-\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}+a -b}{a +b}\right )}{4 a^{3} d}\) \(252\)
derivativedivides \(\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{2}}-\frac {1}{2 a^{2} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {4 b \left (\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{4}-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{4}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a}+\frac {3 a \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{4}\right )}{a^{2}}}{d}\) \(266\)
default \(\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{2}}-\frac {1}{2 a^{2} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {4 b \left (\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{4}-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{4}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a}+\frac {3 a \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{4}\right )}{a^{2}}}{d}\) \(266\)

[In]

int(csch(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

-(2*a^2*exp(4*d*x+4*c)+3*a*b*exp(4*d*x+4*c)+3*exp(4*d*x+4*c)*b^2+4*a^2*exp(2*d*x+2*c)-6*exp(2*d*x+2*c)*b^2+2*a
^2+5*a*b+3*b^2)/(a+b)/d/a^2/(a*exp(4*d*x+4*c)+b*exp(4*d*x+4*c)+2*exp(2*d*x+2*c)*a-2*b*exp(2*d*x+2*c)+a+b)/(exp
(2*d*x+2*c)-1)+3/4/a^3*(-a*b)^(1/2)/d*ln(exp(2*d*x+2*c)-(2*(-a*b)^(1/2)-a+b)/(a+b))-3/4/a^3*(-a*b)^(1/2)/d*ln(
exp(2*d*x+2*c)+(2*(-a*b)^(1/2)+a-b)/(a+b))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1120 vs. \(2 (68) = 136\).

Time = 0.31 (sec) , antiderivative size = 2562, normalized size of antiderivative = 31.24 \[ \int \frac {\text {csch}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate(csch(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[-1/4*(4*(2*a^2 + 3*a*b + 3*b^2)*cosh(d*x + c)^4 + 16*(2*a^2 + 3*a*b + 3*b^2)*cosh(d*x + c)*sinh(d*x + c)^3 +
4*(2*a^2 + 3*a*b + 3*b^2)*sinh(d*x + c)^4 + 8*(2*a^2 - 3*b^2)*cosh(d*x + c)^2 + 8*(3*(2*a^2 + 3*a*b + 3*b^2)*c
osh(d*x + c)^2 + 2*a^2 - 3*b^2)*sinh(d*x + c)^2 - 3*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^6 + 6*(a^2 + 2*a*b + b^
2)*cosh(d*x + c)*sinh(d*x + c)^5 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^6 + (a^2 - 2*a*b - 3*b^2)*cosh(d*x + c)^4
 + (15*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - 2*a*b - 3*b^2)*sinh(d*x + c)^4 + 4*(5*(a^2 + 2*a*b + b^2)*c
osh(d*x + c)^3 + (a^2 - 2*a*b - 3*b^2)*cosh(d*x + c))*sinh(d*x + c)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(d*x + c)^2
+ (15*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 6*(a^2 - 2*a*b - 3*b^2)*cosh(d*x + c)^2 - a^2 + 2*a*b + 3*b^2)*sin
h(d*x + c)^2 - a^2 - 2*a*b - b^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^5 + 2*(a^2 - 2*a*b - 3*b^2)*cosh(d*x
 + c)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(-b/a)*log(((a^2 + 2*a*b + b^2)*cosh(d*x + c
)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2
)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 - 6*a*b + b^2
+ 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c) - 4*((a^2 + a*b)*cosh(d*x
+ c)^2 + 2*(a^2 + a*b)*cosh(d*x + c)*sinh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 + a^2 - a*b)*sqrt(-b/a))/((a
+ b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x
+ c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x
 + c))*sinh(d*x + c) + a + b)) + 8*a^2 + 20*a*b + 12*b^2 + 16*((2*a^2 + 3*a*b + 3*b^2)*cosh(d*x + c)^3 + (2*a^
2 - 3*b^2)*cosh(d*x + c))*sinh(d*x + c))/((a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^6 + 6*(a^4 + 2*a^3*b + a^2
*b^2)*d*cosh(d*x + c)*sinh(d*x + c)^5 + (a^4 + 2*a^3*b + a^2*b^2)*d*sinh(d*x + c)^6 + (a^4 - 2*a^3*b - 3*a^2*b
^2)*d*cosh(d*x + c)^4 + (15*(a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^2 + (a^4 - 2*a^3*b - 3*a^2*b^2)*d)*sinh(
d*x + c)^4 - (a^4 - 2*a^3*b - 3*a^2*b^2)*d*cosh(d*x + c)^2 + 4*(5*(a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^3
+ (a^4 - 2*a^3*b - 3*a^2*b^2)*d*cosh(d*x + c))*sinh(d*x + c)^3 + (15*(a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)
^4 + 6*(a^4 - 2*a^3*b - 3*a^2*b^2)*d*cosh(d*x + c)^2 - (a^4 - 2*a^3*b - 3*a^2*b^2)*d)*sinh(d*x + c)^2 - (a^4 +
 2*a^3*b + a^2*b^2)*d + 2*(3*(a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^5 + 2*(a^4 - 2*a^3*b - 3*a^2*b^2)*d*cos
h(d*x + c)^3 - (a^4 - 2*a^3*b - 3*a^2*b^2)*d*cosh(d*x + c))*sinh(d*x + c)), -1/2*(2*(2*a^2 + 3*a*b + 3*b^2)*co
sh(d*x + c)^4 + 8*(2*a^2 + 3*a*b + 3*b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + 2*(2*a^2 + 3*a*b + 3*b^2)*sinh(d*x +
 c)^4 + 4*(2*a^2 - 3*b^2)*cosh(d*x + c)^2 + 4*(3*(2*a^2 + 3*a*b + 3*b^2)*cosh(d*x + c)^2 + 2*a^2 - 3*b^2)*sinh
(d*x + c)^2 + 3*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^6 + 6*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^5 + (
a^2 + 2*a*b + b^2)*sinh(d*x + c)^6 + (a^2 - 2*a*b - 3*b^2)*cosh(d*x + c)^4 + (15*(a^2 + 2*a*b + b^2)*cosh(d*x
+ c)^2 + a^2 - 2*a*b - 3*b^2)*sinh(d*x + c)^4 + 4*(5*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - 2*a*b - 3*b^
2)*cosh(d*x + c))*sinh(d*x + c)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(d*x + c)^2 + (15*(a^2 + 2*a*b + b^2)*cosh(d*x +
 c)^4 + 6*(a^2 - 2*a*b - 3*b^2)*cosh(d*x + c)^2 - a^2 + 2*a*b + 3*b^2)*sinh(d*x + c)^2 - a^2 - 2*a*b - b^2 + 2
*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^5 + 2*(a^2 - 2*a*b - 3*b^2)*cosh(d*x + c)^3 - (a^2 - 2*a*b - 3*b^2)*cosh
(d*x + c))*sinh(d*x + c))*sqrt(b/a)*arctan(1/2*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c
) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(b/a)/b) + 4*a^2 + 10*a*b + 6*b^2 + 8*((2*a^2 + 3*a*b + 3*b^2)*cosh(d
*x + c)^3 + (2*a^2 - 3*b^2)*cosh(d*x + c))*sinh(d*x + c))/((a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^6 + 6*(a^
4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)*sinh(d*x + c)^5 + (a^4 + 2*a^3*b + a^2*b^2)*d*sinh(d*x + c)^6 + (a^4 -
2*a^3*b - 3*a^2*b^2)*d*cosh(d*x + c)^4 + (15*(a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^2 + (a^4 - 2*a^3*b - 3*
a^2*b^2)*d)*sinh(d*x + c)^4 - (a^4 - 2*a^3*b - 3*a^2*b^2)*d*cosh(d*x + c)^2 + 4*(5*(a^4 + 2*a^3*b + a^2*b^2)*d
*cosh(d*x + c)^3 + (a^4 - 2*a^3*b - 3*a^2*b^2)*d*cosh(d*x + c))*sinh(d*x + c)^3 + (15*(a^4 + 2*a^3*b + a^2*b^2
)*d*cosh(d*x + c)^4 + 6*(a^4 - 2*a^3*b - 3*a^2*b^2)*d*cosh(d*x + c)^2 - (a^4 - 2*a^3*b - 3*a^2*b^2)*d)*sinh(d*
x + c)^2 - (a^4 + 2*a^3*b + a^2*b^2)*d + 2*(3*(a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^5 + 2*(a^4 - 2*a^3*b -
 3*a^2*b^2)*d*cosh(d*x + c)^3 - (a^4 - 2*a^3*b - 3*a^2*b^2)*d*cosh(d*x + c))*sinh(d*x + c))]

Sympy [F]

\[ \int \frac {\text {csch}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {\operatorname {csch}^{2}{\left (c + d x \right )}}{\left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{2}}\, dx \]

[In]

integrate(csch(d*x+c)**2/(a+b*tanh(d*x+c)**2)**2,x)

[Out]

Integral(csch(c + d*x)**2/(a + b*tanh(c + d*x)**2)**2, x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 212 vs. \(2 (68) = 136\).

Time = 0.34 (sec) , antiderivative size = 212, normalized size of antiderivative = 2.59 \[ \int \frac {\text {csch}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=-\frac {2 \, a^{2} + 5 \, a b + 3 \, b^{2} + 2 \, {\left (2 \, a^{2} - 3 \, b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (2 \, a^{2} + 3 \, a b + 3 \, b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}}{{\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2} + {\left (a^{4} - 2 \, a^{3} b - 3 \, a^{2} b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} - {\left (a^{4} - 2 \, a^{3} b - 3 \, a^{2} b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )} - {\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} e^{\left (-6 \, d x - 6 \, c\right )}\right )} d} + \frac {3 \, b \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{2 \, \sqrt {a b} a^{2} d} \]

[In]

integrate(csch(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

-(2*a^2 + 5*a*b + 3*b^2 + 2*(2*a^2 - 3*b^2)*e^(-2*d*x - 2*c) + (2*a^2 + 3*a*b + 3*b^2)*e^(-4*d*x - 4*c))/((a^4
 + 2*a^3*b + a^2*b^2 + (a^4 - 2*a^3*b - 3*a^2*b^2)*e^(-2*d*x - 2*c) - (a^4 - 2*a^3*b - 3*a^2*b^2)*e^(-4*d*x -
4*c) - (a^4 + 2*a^3*b + a^2*b^2)*e^(-6*d*x - 6*c))*d) + 3/2*b*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sq
rt(a*b))/(sqrt(a*b)*a^2*d)

Giac [F]

\[ \int \frac {\text {csch}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int { \frac {\operatorname {csch}\left (d x + c\right )^{2}}{{\left (b \tanh \left (d x + c\right )^{2} + a\right )}^{2}} \,d x } \]

[In]

integrate(csch(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {csch}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {1}{{\mathrm {sinh}\left (c+d\,x\right )}^2\,{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \]

[In]

int(1/(sinh(c + d*x)^2*(a + b*tanh(c + d*x)^2)^2),x)

[Out]

int(1/(sinh(c + d*x)^2*(a + b*tanh(c + d*x)^2)^2), x)